|
The Love numbers ''h'', ''k'', and ''l'' are dimensionless parameters that measure the rigidity of a planetary body and the susceptibility of its shape to change in response to a tidal potential. In 1911 (some authors have 1906)〔Marine Gravity, P. Dehlinger; Elsevier Scientific, 178, p 12〕 Augustus Edward Hough Love introduced the values ''h'' and ''k'' which characterize the overall elastic response of the Earth to the tides. Later, in 1912, T. Shida of Japan added a third Love number, ''l'', which was needed to obtain a complete overall description of the solid Earth's response to the tides. The Love number h is defined as the ratio of the body tide to the height of the static equilibrium tide;〔"Tidal Deformation of the Solid Earth: A Finite Difference Discretization", S.K.Poulsen; Niels Bohr Institute, University of Copenhagen; p 24; ()〕 also defined as the vertical (radial) displacement or variation of the planet's elastic properties. In terms of the tide generating potential ''V''(''θ'', ''φ'')/''g'', the displacement is ''h'' ''V''(''θ'', ''φ'')/''g'' where ''θ'' is latitude, ''φ'' is east longitude and ''g'' is acceleration to gravity.〔Earth Tides; D.C.Agnew, University of California; 2007; 174〕 For a hypothetical solid Earth ''h'' = 0 . For a liquid Earth, one would expect ''h'' = 1. However, the deformation of the sphere causes the potential field to change, and thereby deform the sphere even more. The theoretical maximum is ''h'' = 2.5. For the real Earth, ''h'' lies between these values. The Love number k is defined as the cubical dilation or the ratio of the additional potential (self-reactive force) produced by the deformation of the deforming potential. It can be represented as ''k'' ''V''(''θ'', ''φ'')/''g'' . Where ''k'' = 0 for a rigid body.〔 The Love number l represents the ratio of the horizontal (transverse) displacement of as element of mass of the planet's crust to that of the corresponding static ocean tide.〔 In potential notation the transverse displacement is ''l'' del(''V''(''θ'', ''φ''))/''g'', where del is the horizontal gradient operator. As does ''h'' and ''k'', ''l'' = 0 for a rigid body.〔 According to Cartwright, "An elastic solid spheroid will yield to an external tide potential ''U''2 of spherical harmonic degree 2 by a surface tide ''h''2''U''2/''g'' and the self-attraction of this tide will increase the external potential by ''k''2''U''2."〔Tides: A Scientific History; David E. Cartwright; Cambridge University Press, 1999, ISBN 0-521-62145-3; pp 140–141,224〕 The magnitudes of the Love numbers depend on the rigidity and mass distribution of the spheroid. Love numbers ''h''''n'', ''k''''n'', and ''l''''n'' can also be calculated for higher orders of spherical harmonics. For elastic Earth the Love numbers lie in the range: 0.616 ≤ ''h''2 ≤ 0.624, 0.304 ≤ ''k''2 ≤ 0.312 and 0.084 ≤ ''l''2 ≤ 0.088 〔 For Earth's tides one can calculate tilt factor = 1 + ''k'' − ''h'' and gravimetric factor = 1 + ''h'' − (3/2)''k'', where suffix two is assumed.〔 == References == 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Love number」の詳細全文を読む スポンサード リンク
|